Exploring wavelet transforms for morphological differentiation between functionally different cat retinal ganglion cells

Brain and Mind 4 (1):67-90 (2003)
Abstract
Cognition or higher brain activity is sometimes seen as a phenomenon greater than the sum of its parts. This viewpoint however is largely dependent on the state of the art of experimental techniques that endeavor to characterize morphology and its association to function. Retinal ganglion cells are readily accessible for this work and we discuss recent advances in computational techniques in identifying novel parameters that describe structural attributes possibly associated with specific function. These parameters are based on calculating wavelet gradients from cell images followed by the extraction of meaningful measures including 2nd wavelet moment, entropy of orientation, and curvature. For the three cell types analyzed, the mean 2nd wavelet moment, which relates to the field of influence of the dendritic-tree segments was significantly different. cells had the highest mean 2nd wavelet moment, followed by the and cells (134 ± 22, 93 ± 19 and 63 ± 12, respectively). There was no significant difference between cells for entropy of orientation, indicating no class with a preferential orientation of their dendritic tree. Curvature provided similar results to the 2nd wavelet moment with cells having the highest curvature followed by and the cells (mean ± SD: 161 ± 15; 134 ± 22; 121 ± 15). Our feature space analysis also indicated a difference between these cell types. No difference was found between the and cell types and their physiological counterparts the Y and X cells based on wavelet analysis. Both the X and Y cells can be divided into two subtypes, the ON- and OFF-center cells based on the stratification level of the dendritic tree within the retina. Using 2nd wavelet moment, a difference in their morphological attributes, not reported previously, was noted for these subtypes. The 2nd wavelet moment and curvature are further discussed with respect to explaining regularity of spacing and coverage associated with retinal ganglion cell mosaics.
Keywords cat retinal ganglion cells  curvature  entropy of orientation  function  morphology  mosaics  wavelet gradient  wavelet moment
Categories (categorize this paper)
DOI 10.1023/A:1024112215968
Options
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 30,798
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index
2009-01-28

Total downloads
17 ( #293,593 of 2,202,425 )

Recent downloads (6 months)
2 ( #149,904 of 2,202,425 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature