Exploring wavelet transforms for morphological differentiation between functionally different cat retinal ganglion cells

Brain and Mind 4 (1):67-90 (2003)

Jefferson Leandro
Universidade Federal do Rio Grande do Norte
Cognition or higher brain activity is sometimes seen as a phenomenon greater than the sum of its parts. This viewpoint however is largely dependent on the state of the art of experimental techniques that endeavor to characterize morphology and its association to function. Retinal ganglion cells are readily accessible for this work and we discuss recent advances in computational techniques in identifying novel parameters that describe structural attributes possibly associated with specific function. These parameters are based on calculating wavelet gradients from cell images followed by the extraction of meaningful measures including 2nd wavelet moment, entropy of orientation, and curvature. For the three cell types analyzed, the mean 2nd wavelet moment, which relates to the field of influence of the dendritic-tree segments was significantly different. cells had the highest mean 2nd wavelet moment, followed by the and cells (134 ± 22, 93 ± 19 and 63 ± 12, respectively). There was no significant difference between cells for entropy of orientation, indicating no class with a preferential orientation of their dendritic tree. Curvature provided similar results to the 2nd wavelet moment with cells having the highest curvature followed by and the cells (mean ± SD: 161 ± 15; 134 ± 22; 121 ± 15). Our feature space analysis also indicated a difference between these cell types. No difference was found between the and cell types and their physiological counterparts the Y and X cells based on wavelet analysis. Both the X and Y cells can be divided into two subtypes, the ON- and OFF-center cells based on the stratification level of the dendritic tree within the retina. Using 2nd wavelet moment, a difference in their morphological attributes, not reported previously, was noted for these subtypes. The 2nd wavelet moment and curvature are further discussed with respect to explaining regularity of spacing and coverage associated with retinal ganglion cell mosaics.
Keywords cat retinal ganglion cells  curvature  entropy of orientation  function  morphology  mosaics  wavelet gradient  wavelet moment
Categories (categorize this paper)
DOI 10.1023/A:1024112215968
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 47,395
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles


Added to PP index

Total views
31 ( #301,894 of 2,291,331 )

Recent downloads (6 months)
4 ( #301,632 of 2,291,331 )

How can I increase my downloads?


My notes

Sign in to use this feature