Abstract
It is a theorem of Rowbottom [12] that ifκis measurable andIis a normal prime ideal onκ, then for eachλ<κ,In this paper a natural structural property of ideals, distributivity, is considered and shown to be related to this and other ideal theoretic partition relations.The set theoretical terminology is standard and background results on the theory of ideals may be found in [5] and [8]. Throughoutκwill denote an uncountable regular cardinal, andIa proper, nonprincipal,κ-complete ideal onκ.NSκis the ideal of nonstationary subsets ofκ, andIκ= {X⊆κ∣∣X∣<κ}. IfA∈I+ −I), then anI-partitionofAis a maximal collectionW⊆,P ∩I+so thatX∩ Y ∈IwheneverX, Y∈W, X≠Y. TheI-partitionWis said to be disjoint if distinct members ofWare disjoint, and in this case, fordenotes the unique member ofWcontainingξ. A sequence 〈Wα∣α<η} ofI-partitions ofAis said to be decreasing if wheneverα<β<ηandX∈Wβthere is aY∈Wαsuch thatX⊆Y..