Twin paradox and the logical foundation of relativity theory

Abstract
We study the foundation of space-time theory in the framework of first-order logic (FOL). Since the foundation of mathematics has been successfully carried through (via set theory) in FOL, it is not entirely impossible to do the same for space-time theory (or relativity). First we recall a simple and streamlined FOL-axiomatization SpecRel of special relativity from the literature. SpecRel is complete with respect to questions about inertial motion. Then we ask ourselves whether we can prove the usual relativistic properties of accelerated motion (e.g., clocks in acceleration) in SpecRel. As it turns out, this is practically equivalent to asking whether SpecRel is strong enough to "handle" (or treat) accelerated observers. We show that there is a mathematical principle called induction (IND) coming from real analysis which needs to be added to SpecRel in order to handle situations involving relativistic acceleration. We present an extended version AccRel of SpecRel which is strong enough to handle accelerated motion, in particular, accelerated observers. Among others, we show that the Twin Paradox becomes provable in AccRel, but it is not provable without IND.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 35,507
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Analytics

Added to PP index
2009-01-28

Total downloads
38 ( #166,481 of 2,287,563 )

Recent downloads (6 months)
3 ( #165,291 of 2,287,563 )

How can I increase my downloads?

Monthly downloads

My notes

Sign in to use this feature