On Turing degrees of points in computable topology

Mathematical Logic Quarterly 54 (5):470-482 (2008)

Abstract
This paper continues our study of computable point-free topological spaces and the metamathematical points in them. For us, a point is the intersection of a sequence of basic open sets with compact and nested closures. We call such a sequence a sharp filter. A function fF from points to points is generated by a function F from basic open sets to basic open sets such that sharp filters map to sharp filters. We restrict our study to functions that have at least all computable points in their domains.We follow Turing's approach in stating that a point is computable if it is the limit of a computable sharp filter; we then define the Turing degree Deg of a general point x in an analogous way. Because of the vagaries of the definition, a result of J. Miller applies and we note that not all points in all our spaces have Turing degrees; but we also show a certain class of points do. We further show that in ℝn all points have Turing degrees and that these degrees are the same as the classical Turing degrees of points defined by other researchers.We also prove the following: For a point x that has a Turing degree and lies either on a computable tree T or in the domain of a computable function fF, there is a sharp filter on T or in dom converging to x and with the same Turing degree as x. Furthermore, all possible Turing degrees occur among the degrees of such points for a given computable function fF or a complete, computable, binary tree T. For each x ∈ dom for which x and fF have Turing degrees, Deg) ≤ Deg. Finally, the Turing degrees of the sharp filters convergent to a given x are closed upward in the partial order of all Turing degrees
Keywords point‐freeness  computability  computable topology  computable analysis  Turing degree
Categories (categorize this paper)
DOI 10.1002/malq.200710062
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 47,330
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

On Computable Numbers, with an Application to the Entscheidungsproblem.Alan Turing - 1936 - Proceedings of the London Mathematical Society 42 (1):230-265.
On Effective Topological Spaces.Dieter Spreen - 1998 - Journal of Symbolic Logic 63 (1):185-221.
A Blend of Methods of Recursion Theory and Topology.Iraj Kalantari & Larry Welch - 2003 - Annals of Pure and Applied Logic 124 (1-3):141-178.
Degrees of Unsolvability of Continuous Functions.Joseph S. Miller - 2004 - Journal of Symbolic Logic 69 (2):555 - 584.

View all 6 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Analytics

Added to PP index
2013-11-03

Total views
18 ( #516,352 of 2,291,078 )

Recent downloads (6 months)
3 ( #400,984 of 2,291,078 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature