Recursive constructions in topological spaces

Journal of Symbolic Logic 44 (4):609-625 (1979)

Abstract
We study topological constructions in the recursion theoretic framework of the lattice of recursively enumerable open subsets of a topological space X. Various constructions produce complemented recursively enumerable open sets with additional recursion theoretic properties, as well as noncomplemented open sets. In contrast to techniques in classical topology, we construct a disjoint recursively enumerable collection of basic open sets which cannot be extended to a recursively enumerable disjoint collection of basic open sets whose union is dense in X
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2273299
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 47,330
Through your library

References found in this work BETA

Recursively Enumerable Vector Spaces.G. Metakides - 1977 - Annals of Pure and Applied Logic 11 (2):147.
Automorphisms of the Lattice of Recursively Enumerable Vector Spaces.Iraj Kalantari - 1979 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 25 (25-29):385-401.
Automorphisms of the Lattice of Recursively Enumerable Vector Spaces.Iraj Kalantari - 1979 - Mathematical Logic Quarterly 25 (25‐29):385-401.
Theory of Recursive Functions and Effective Computability.Hartley Rogers - 1971 - Journal of Symbolic Logic 36 (1):141-146.
General Topology.John L. Kelley - 1962 - Journal of Symbolic Logic 27 (2):235-235.

Add more references

Citations of this work BETA

Effective Topological Spaces III: Forcing and Definability.Iraj Kalantari & Galen Weitkamp - 1987 - Annals of Pure and Applied Logic 36 (1):17-27.
Effective Topological Spaces II: A Hierarchy.Iraj Kalantari & Galen Weitkamp - 1982 - Annals of Pure and Applied Logic 29 (2):207-224.
Effective Inseparability in a Topological Setting.Dieter Spreen - 1996 - Annals of Pure and Applied Logic 80 (3):257-275.
Effective Topological Spaces I: A Definability Theory.Iraj Kalantari & Galen Weitkamp - 1982 - Annals of Pure and Applied Logic 29 (1):1-27.

View all 6 citations / Add more citations

Similar books and articles

On Recursive Enumerability with Finite Repetitions.Stephan Wehner - 1999 - Journal of Symbolic Logic 64 (3):927-945.
Degrees of Recursively Enumerable Topological Spaces.Iraj Kalantari & J. B. Remmel - 1983 - Journal of Symbolic Logic 48 (3):610-622.
On the Orbits of Hyperhypersimple Sets.Wolfgang Maass - 1984 - Journal of Symbolic Logic 49 (1):51-62.
Simple and Hyperhypersimple Vector Spaces.Allen Retzlaff - 1978 - Journal of Symbolic Logic 43 (2):260-269.
Definable Structures in the Lattice of Recursively Enumerable Sets.E. Herrmann - 1984 - Journal of Symbolic Logic 49 (4):1190-1197.
Recursively Enumerable Generic Sets.Wolfgang Maass - 1982 - Journal of Symbolic Logic 47 (4):809-823.

Analytics

Added to PP index
2009-01-28

Total views
11 ( #738,496 of 2,291,029 )

Recent downloads (6 months)
1 ( #833,703 of 2,291,029 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature