A Robust Iris Feature Extraction Approach Based on Monogenic and 2D Log-Gabor Filters

Journal of Intelligent Systems 24 (2):161-179 (2015)

Abstract
This article suggests an enhancement of the Masek circle model approach usually used to find a trade-off between modeling complexity, algorithm accuracy, and computational time, mainly for embedded systems where the real-time aspect is a high challenge. Moreover, most commercialized systems today frame iris regions by circles. This work led to several novelties: first, in the segmentation process, the corneal reflection removal method based on morphological reconstruction and pixel connectivity was implemented. Second, the picture size reduction was applied according to nearest-neighbor interpolation. Third, the image gradient of the convolved-reduced picture was then generated using four proposed matrices. Fourth, and to reduce the complexity of the traditional method for the detection of the top and lower eyelids, a new method based on the Radon transform and the least squares fitting method was applied. Fifth, eyelashes were detected via the diagonal gradient and thresholding method. Monogenic signal was used in the feature extraction process. Finally, two distance measures were selected as a metric for recognition. Our experimental results using CASIA iris database V3.0 reveal that the proposed method provides a high performance in terms of speed and accuracy. Using dissimilarity modified Hamming distance, the accuracy of iris recognition was improved, with a false acceptance rate equal to 3% and a speed at least eight times as compared with the state of the art.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
ISBN(s)
DOI 10.1515/jisys-2014-0109
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 45,727
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Automatic Attendance Monitoring System.P. Padma Rekha, V. Narendhiran, D. Amudhan, S. Ramya & N. Pavithra - 2016 - International Journal for Science and Advance Research in Technology 2 (2):23-25.

Analytics

Added to PP index
2017-01-12

Total views
10 ( #769,165 of 2,280,974 )

Recent downloads (6 months)
4 ( #326,182 of 2,280,974 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature