# The complexity of topological conjugacy of pointed Cantor minimal systems

Archive for Mathematical Logic 56 (3-4):215-235 (2017)

# Abstract

In this paper, we analyze the complexity of topological conjugacy of pointed Cantor minimal systems from the point of view of descriptive set theory. We prove that the topological conjugacy relation on pointed Cantor minimal systems is Borel bireducible with the Borel equivalence relation ΔR+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{\mathbb {R}}^+$$\end{document} on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{{\mathbb {N}}}$$\end{document} defined by xΔR+y⇔{xi:i∈N}={yi:i∈N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \varDelta _{\mathbb {R}}^+y \Leftrightarrow \{x_i{:}\,i \in {\mathbb {N}}\}=\{y_i{:}\,i \in {\mathbb {N}}\}$$\end{document}. Moreover, we show that ΔR+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{\mathbb {R}}^+$$\end{document} is a lower bound for the Borel complexity of topological conjugacy of Cantor minimal systems. Finally, we interpret our results in terms of properly ordered Bratteli diagrams and discuss some applications.

# Other Versions

No versions found

## PhilArchive

Upload a copy of this work     Papers currently archived: 95,443

Setup an account with your affiliations in order to access resources via your University's proxy server

# Similar books and articles

Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.
Coherent trees that are not Countryman.Yinhe Peng - 2017 - Archive for Mathematical Logic 56 (3-4):237-251.
A remark on hereditarily nonparadoxical sets.Péter Komjáth - 2016 - Archive for Mathematical Logic 55 (1-2):165-175.
A strong partition cardinal above $$\varTheta$$ Θ.Daniel W. Cunningham - 2017 - Archive for Mathematical Logic 56 (3-4):403-421.
Maximally embeddable components.Miloš S. Kurilić - 2013 - Archive for Mathematical Logic 52 (7-8):793-808.
Comparison of fine structural mice via coarse iteration.F. Schlutzenberg & J. R. Steel - 2014 - Archive for Mathematical Logic 53 (5-6):539-559.

2017-11-06

16 (#941,132)

6 months
5 (#893,866)