Extensions of arithmetic for proving termination of computations

Journal of Symbolic Logic 54 (3):779-794 (1989)
Kirby and Paris have exhibited combinatorial algorithms whose computations always terminate, but for which termination is not provable in elementary arithmetic. However, termination of these computations can be proved by adding an axiom first introduced by Goodstein in 1944. Our purpose is to investigate this axiom of Goodstein, and some of its variants, and to show that these are potentially adequate to prove termination of computations of a wide class of algorithms. We prove that many variations of Goodstein's axiom are equivalent, over elementary arithmetic, and contrast these results with those recently obtained for Kruskal's theorem
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2274742
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,433
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

21 ( #222,788 of 1,925,039 )

Recent downloads (6 months)

1 ( #417,998 of 1,925,039 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.