P 0 1 \pi^0_1 -presentations of algebras

Archive for Mathematical Logic 45 (6):769-781 (2006)
  Copy   BIBTEX

Abstract

In this paper we study the question as to which computable algebras are isomorphic to non-computable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi_{1}^{0}$$\end{document}-algebras. We show that many known algebras such as the standard model of arithmetic, term algebras, fields, vector spaces and torsion-free abelian groups have non-computable\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi_{1}^{0}$$\end{document}-presentations. On the other hand, many of this structures fail to have non-computable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma_{1}^{0}$$\end{document}-presentation.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 106,824

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.

Analytics

Added to PP
2010-04-17

Downloads
98 (#231,163)

6 months
8 (#538,554)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Hiearchies of Boolean algebras.Lawrence Feiner - 1970 - Journal of Symbolic Logic 35 (3):365-374.
Stability among r.e. quotient algebras.John Love - 1993 - Annals of Pure and Applied Logic 59 (1):55-63.

Add more references