In Michael Price & John Campbell (eds.), Evolution, Development, and Complexity: Multiscale Models in Complex Adaptive Systems (forthcoming)

Authors
Abstract
We review some of the main implications of the free-energy principle (FEP) for the study of the self-organization of living systems – and how the FEP can help us to understand (and model) biotic self-organization across the many temporal and spatial scales over which life exists. In order to maintain its integrity as a bounded system, any biological system - from single cells to complex organisms and societies - has to limit the disorder or dispersion (i.e., the long-run entropy) of its constituent states. We review how this can be achieved by living systems that minimize their variational free energy. Variational free energy is an information theoretic construct, originally introduced into theoretical neuroscience and biology to explain perception, action, and learning. It has since been extended to explain the evolution, development, form, and function of entire organisms, providing a principled model of biotic self-organization and autopoiesis. It has provided insights into biological systems across spatiotemporal scales, ranging from microscales (e.g., sub- and multicellular dynamics), to intermediate scales (e.g., groups of interacting animals and culture), through to macroscale phenomena (the evolution of entire species). A crucial corollary of the FEP is that an organism just is (i.e., embodies or entails) an implicit model of its environment. As such, organisms come to embody causal relationships of their ecological niche, which, in turn, is influenced by their resulting behaviors. Crucially, free-energy minimization can be shown to be equivalent to the maximization of Bayesian model evidence. This allows us to cast natural selection in terms of Bayesian model selection, providing a robust theoretical account of how organisms come to match or accommodate the spatiotemporal complexity of their surrounding niche. In line with the theme of this volume; namely, biological complexity and self-organization, this chapter will examine a variational approach to self-organization across multiple dynamical scales.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Buy the book Find it on Amazon.com
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

 PhilArchive page | Other versions
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Action in Perception.Alva Noë - 2005 - MIT Press.

View all 24 references / Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Free-Energy and the Brain.Karl J. Friston & Klaas E. Stephan - 2007 - Synthese 159 (3):417 - 458.
Species of Realization and the Free Energy Principle.Michael David Kirchhoff - 2015 - Australasian Journal of Philosophy 93 (4):706-723.
Complexity and Life.Fritjof Capra - 2002 - Emergence: Complexity and Organization 4 (1):15-33.
Representation of Living Forms.Leo Hellerman - 2006 - Biology and Philosophy 21 (4):537-552.

Analytics

Added to PP index
2018-06-04

Total views
834 ( #5,468 of 2,403,076 )

Recent downloads (6 months)
108 ( #5,580 of 2,403,076 )

How can I increase my downloads?

Downloads

My notes