Maxwell’s Classical Electrodynamics (MCED) suffers several inconsistencies: (1) the Lorentz force law of MCED violates Newton’s Third Law of Motion (N3LM) in case of stationary and divergent or convergent current distributions; (2) the general Jefimenko electric field solution of MCED shows two longitudinal far fields that are not waves; (3) the ratio of the electrodynamic energy-momentum of a charged sphere in uniform motion has an incorrect factor of 4/3. A consistent General Classical Electrodynamics (GCED) is presented that is based on Whittaker’s reciprocal force law that satisfies N3LM. The Whittaker force is expressed as a scalar magnetic field force, added to the Lorentz force. GCED is consistent only if it is assumed that the electric potential velocity in vacuum, ’a’, is much greater than ’c’ (a ≫ c); GCED reduces to MCED, in case we assume a = c. Longitudinal electromagnetic waves and superluminal longitudinal electric potential waves are predicted. This theory has been verified by seemingly unrelated experiments, such as the detection of superluminal Coulomb fields and longitudinal Ampère forces, and has a wide range of electrical engineering applications.
Keywords electrodynamics  superluminal  longitudinal  scalar  electromagnetic  fields  classical  waves  Maxwell  Lorentz
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

 PhilArchive page | Other versions
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

General Classical Electrodynamics.Koenraad Johan van Vlaenderen - 2016 - Universal Journal of Physics and Application 10 (4):128-140.
Inconsistency in Classical Electrodynamics?F. A. Muller - 2007 - Philosophy of Science 74 (2):253-277.
Maxwell's Paradox: The Metaphysics of Classical Electrodynamics and its Time Reversal Invariance.Valia Allori - 2015 - Analytica: an electronic, open-access journal for philosophy of science 1:1-19.
Electrodynamics and Radiation Reaction.Richard T. Hammond - 2013 - Foundations of Physics 43 (2):201-209.
The Relation Between Classical and Quantum Electrodynamics.Mario Bacelar Valente - 2011 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 26 (1):51-68.


Added to PP index

Total views
361 ( #28,261 of 2,504,821 )

Recent downloads (6 months)
63 ( #13,087 of 2,504,821 )

How can I increase my downloads?


My notes