How Strong is Ramsey’s Theorem If Infinity Can Be Weak?
Journal of Symbolic Logic:1-20 (forthcoming)
Abstract
We study the first-order consequences of Ramsey’s Theorem for k-colourings of n-tuples, for fixed $n, k \ge 2$, over the relatively weak second-order arithmetic theory $\mathrm {RCA}^*_0$. Using the Chong–Mourad coding lemma, we show that in a model of $\mathrm {RCA}^*_0$ that does not satisfy $\Sigma ^0_1$ induction, $\mathrm {RT}^n_k$ is equivalent to its relativization to any proper $\Sigma ^0_1$ -definable cut, so its truth value remains unchanged in all extensions of the model with the same first-order universe. We give a complete axiomatization of the first-order consequences of $\mathrm {RCA}^*_0 + \mathrm {RT}^n_k$ for $n \ge 3$. We show that they form a non-finitely axiomatizable subtheory of $\mathrm {PA}$ whose $\Pi _3$ fragment coincides with $\mathrm {B} \Sigma _1 + \exp $ and whose $\Pi _{\ell +3}$ fragment for $\ell \ge 1$ lies between $\mathrm {I} \Sigma _\ell \Rightarrow \mathrm {B} \Sigma _{\ell +1}$ and $\mathrm {B} \Sigma _{\ell +1}$. We also give a complete axiomatization of the first-order consequences of $\mathrm {RCA}^*_0 + \mathrm {RT}^2_k + \neg \mathrm {I} \Sigma _1$. In general, we show that the first-order consequences of $\mathrm {RCA}^*_0 + \mathrm {RT}^2_k$ form a subtheory of $\mathrm {I} \Sigma _2$ whose $\Pi _3$ fragment coincides with $\mathrm {B} \Sigma _1 + \exp $ and whose $\Pi _4$ fragment is strictly weaker than $\mathrm {B} \Sigma _2$ but not contained in $\mathrm {I} \Sigma _1$. Additionally, we consider a principle $\Delta ^0_2$ - $\mathrm {RT}^2_2$ which is defined like $\mathrm {RT}^2_2$ but with both the $2$ -colourings and the solutions allowed to be $\Delta ^0_2$ -sets rather than just sets. We show that the behaviour of $\Delta ^0_2$ - $\mathrm {RT}^2_2$ over $\mathrm {RCA}_0 + \mathrm {B}\Sigma ^0_2$ is in many ways analogous to that of $\mathrm {RT}^2_2$ over $\mathrm {RCA}^*_0$, and that $\mathrm {RCA}_0 + \mathrm {B} \Sigma ^0_2 + \Delta ^0_2$ - $\mathrm {RT}^2_2$ is $\Pi _4$ - but not $\Pi _5$ -conservative over $\mathrm {B} \Sigma _2$. However, the statement we use to witness failure of $\Pi _5$ -conservativity is not provable in $\mathrm {RCA}_0 +\mathrm {RT}^2_2$.DOI
10.1017/jsl.2022.46
My notes
Similar books and articles
Weaker cousins of Ramsey's theorem over a weak base theory.Marta Fiori-Carones, Leszek Aleksander Kołodziejczyk & Katarzyna W. Kowalik - 2021 - Annals of Pure and Applied Logic 172 (10):103028.
The Strength of the Rainbow Ramsey Theorem.Barbara F. Csima & Joseph R. Mileti - 2009 - Journal of Symbolic Logic 74 (4):1310 - 1324.
Dickson’s lemma and weak Ramsey theory.Yasuhiko Omata & Florian Pelupessy - 2019 - Archive for Mathematical Logic 58 (3-4):413-425.
Reverse mathematics and a Ramsey-type König's Lemma.Stephen Flood - 2012 - Journal of Symbolic Logic 77 (4):1272-1280.
The polarized Ramsey’s theorem.Damir D. Dzhafarov & Jeffry L. Hirst - 2009 - Archive for Mathematical Logic 48 (2):141-157.
On the Strength of Ramsey's Theorem.David Seetapun & Theodore A. Slaman - 1995 - Notre Dame Journal of Formal Logic 36 (4):570-582.
Ramsey’s theorem and König’s Lemma.T. E. Forster & J. K. Truss - 2007 - Archive for Mathematical Logic 46 (1):37-42.
On the uniform computational content of ramsey’s theorem.Vasco Brattka & Tahina Rakotoniaina - 2017 - Journal of Symbolic Logic 82 (4):1278-1316.
A game‐theoretic proof of analytic Ramsey theorem.Kazuyuki Tanaka - 1992 - Mathematical Logic Quarterly 38 (1):301-304.
A weak variant of Hindman’s Theorem stronger than Hilbert’s Theorem.Lorenzo Carlucci - 2018 - Archive for Mathematical Logic 57 (3-4):381-389.
On the strength of Ramsey's theorem without Σ1 -induction.Keita Yokoyama - 2013 - Mathematical Logic Quarterly 59 (1-2):108-111.
Ramsey’s coheirs.Eugenio Colla & Domenico Zambella - 2022 - Journal of Symbolic Logic 87 (1):377-391.
Reverse mathematics and Ramsey's property for trees.Jared Corduan, Marcia J. Groszek & Joseph R. Mileti - 2010 - Journal of Symbolic Logic 75 (3):945-954.
Ramsey's Theorem for Pairs and Provably Recursive Functions.Alexander Kreuzer & Ulrich Kohlenbach - 2009 - Notre Dame Journal of Formal Logic 50 (4):427-444.
The Jordan curve theorem and the Schönflies theorem in weak second-order arithmetic.Nobuyuki Sakamoto & Keita Yokoyama - 2007 - Archive for Mathematical Logic 46 (5-6):465-480.
Analytics
Added to PP
2022-06-15
Downloads
1 (#1,500,365)
6 months
1 (#450,993)
2022-06-15
Downloads
1 (#1,500,365)
6 months
1 (#450,993)
Historical graph of downloads
Sorry, there are not enough data points to plot this chart.
References found in this work
On the strength of Ramsey's theorem for pairs.Peter A. Cholak, Carl G. Jockusch & Theodore A. Slaman - 2001 - Journal of Symbolic Logic 66 (1):1-55.
On the Strength of Ramsey's Theorem.David Seetapun & Theodore A. Slaman - 1995 - Notre Dame Journal of Formal Logic 36 (4):570-582.
Ramsey's theorem and recursion theory.Carl G. Jockusch - 1972 - Journal of Symbolic Logic 37 (2):268-280.
Factorization of polynomials and °1 induction.S. G. Simpson - 1986 - Annals of Pure and Applied Logic 31:289.
Unifying the model theory of first-order and second-order arithmetic via WKL 0 ⁎.Ali Enayat & Tin Lok Wong - 2017 - Annals of Pure and Applied Logic 168 (6):1247-1283.