Abstract
Textual entailment is a relationship that obtains between fragments of text when one fragment in some sense implies the other fragment. The automation of textual entailment recognition supports a wide variety of text-based tasks, including information retrieval, information extraction, question answering, text summarization, and machine translation. Much ingenuity has been devoted to developing algorithms for identifying textual entailments, but relatively little to saying what textual entailment actually is. This article is a review of the logical and philosophical issues involved in providing an adequate definition of textual entailment. We show that many natural definitions of textual entailment are refuted by counterexamples, including the most widely cited definition of Dagan et al. We then articulate and defend the following revised definition: T textually entails H = df typically, a human reading T would be justified in inferring the proposition expressed by H from the proposition expressed by T. We also show that textual entailment is context-sensitive, nontransitive, and nonmonotonic.