Smoke without fire: What do virtual experiments in cognitive science really tell us?

Many activities in Cognitive Science involve complex computer models and simulations of both theoretical and real entities. Artificial Intelligence and the study of artificial neural nets in particular, are seen as major contributors in the quest for understanding the human mind. Computational models serve as objects of experimentation, and results from these virtual experiments are tacitly included in the framework of empirical science. Simulations of cognitive functions, like learning to speak, or discovering syntactical structures in language, are the basis for many claims about human capacities in language acquisition. This raises the question whether results obtained from experiments that are essentially performed on data structures are equivalent to results from "real" experiments. This paper examines some design methodologies for models of cognitive functions using artificial neural nets. The process of conducting the cognitive simulations is largely a projection of theories, or even unsubstantiated conjectures, onto simulated neural structures and an interpretation of the experimental results in terms of the human brain. The problem with this process is that results from virtual experiments are taken to refer unambiguously to the human brain; and the more the language of human cognitive function is deployed in both theory construction and (virtual) experimental interpretation, the more convincing the impression. Additionally, the complexity of the methodologies, principles, and visualization techniques, in the implementation of the computational model, masks the lack of actual similarities between model and real world phenomena. Some computational models involving artificial neural nets have had some success, even commercially, but there are indications that the results from virtual experiments have little value in explaining cognitive functions. The problem seems to be in relating computational, or mathematical, entities to real world objects, like neurons and brains. I argue that the role of Artificial Intelligence as a contributor to the knowledge base of Cognitive Science is diminished as a consequence.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 29,820
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index

Total downloads
21 ( #259,139 of 2,210,138 )

Recent downloads (6 months)
1 ( #382,810 of 2,210,138 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature