Abstract
A mathematical framework that unifies the standard formalisms of special relativity and quantum mechanics is proposed. For this a Hilbert space H of functions of four variables x,t furnished with an additional indefinite inner product invariant under Poincare transformations is introduced. For a class of functions in H that are well localized in the time variable the usual formalism of non-relativistic quantum mechanics is derived. In particular, the interference in time for these functions is suppressed; a motion in H becomes the usual Shrodinger evolution with t as a parameter. The relativistic invariance of the construction is proved. The usual theory of relativity on Minkowski space-time is shown to be ``isometrically and equivariantly embedded'' into H. That is, classical space-time is isometrically embedded into H, Poincare transformations have unique extensions to isomorphisms of H and the embedding commutes with Poincare transformations.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Reprint years 2008
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 53,742
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Analytics

Added to PP index
2009-01-28

Total views
51 ( #187,690 of 2,349,842 )

Recent downloads (6 months)
1 ( #511,368 of 2,349,842 )

How can I increase my downloads?

Downloads

My notes