Isomorphic and strongly connected components

Archive for Mathematical Logic 54 (1-2):35-48 (2015)

Abstract
We study the partial orderings of the form ⟨P,⊂⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle \mathbb{P}, \subset\rangle}$$\end{document}, where X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}}$$\end{document} is a binary relational structure with the connectivity components isomorphic to a strongly connected structure Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Y}}$$\end{document} and P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P} }$$\end{document} is the set of substructures of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {X}}$$\end{document} isomorphic to X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}}$$\end{document}. We show that, for example, for a countable X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}}$$\end{document}, the poset ⟨P,⊂⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle \mathbb {P}, \subset\rangle}$$\end{document} is either isomorphic to a finite power of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P} }$$\end{document} or forcing equivalent to a separative atomless σ-closed poset and, consistently, to P/fin. In particular, this holds for each ultrahomogeneous structure X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}}$$\end{document} such that X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}}$$\end{document} or Xc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}^{c}}$$\end{document} is a disconnected structure and in this case Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Y}}$$\end{document} can be replaced by an ultrahomogeneous connected digraph.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
ISBN(s)
DOI 10.1007/s00153-014-0399-2
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 47,283
Through your library

References found in this work BETA

Maximally Embeddable Components.Miloš S. Kurilić - 2013 - Archive for Mathematical Logic 52 (7-8):793-808.
Posets of Copies of Countable Scattered Linear Orders.Miloš S. Kurilić - 2014 - Annals of Pure and Applied Logic 165 (3):895-912.
Forcing by Non-Scattered Sets.Miloš S. Kurilić & Stevo Todorčević - 2012 - Annals of Pure and Applied Logic 163 (9):1299-1308.

Add more references

Citations of this work BETA

Different Similarities.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (7-8):839-859.

Add more citations

Similar books and articles

Maximally Embeddable Components.Miloš S. Kurilić - 2013 - Archive for Mathematical Logic 52 (7-8):793-808.
Existence of EF-Equivalent Non-Isomorphic Models.Chanoch Havlin & Saharon Shelah - 2007 - Mathematical Logic Quarterly 53 (2):111-127.
Isomorphic but Not Lower Base-Isomorphic Cylindric Set Algebras.B. Biró & S. Shelah - 1988 - Journal of Symbolic Logic 53 (3):846-853.
Connected Components of Graphs and Reverse Mathematics.Jeffry L. Hirst - 1992 - Archive for Mathematical Logic 31 (3):183-192.
Groups of Dimension Two and Three Over o-Minimal Structures.A. Nesin, A. Pillay & V. Razenj - 1991 - Annals of Pure and Applied Logic 53 (3):279-296.
Universal Groups of Effect Spaces.Stanley Gudder - 1999 - Foundations of Physics 29 (3):409-422.
Connected Components of Definable Groups, and o-Minimality II.Annalisa Conversano & Anand Pillay - 2015 - Annals of Pure and Applied Logic 166 (7-8):836-849.
Definably Connected Nonconnected Sets.Antongiulio Fornasiero - 2012 - Mathematical Logic Quarterly 58 (1):125-126.
Posets of Copies of Countable Scattered Linear Orders.Miloš S. Kurilić - 2014 - Annals of Pure and Applied Logic 165 (3):895-912.

Analytics

Added to PP index
2015-09-03

Total views
10 ( #781,904 of 2,290,693 )

Recent downloads (6 months)
2 ( #583,140 of 2,290,693 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature