Automatic bare sluice disambiguation in dialogue

The capacity to recognise and interpret sluices—bare wh-phrases that exhibit a sentential meaning—is essential to maintaining cohesive interaction between human users and a machine interlocutor in a dialogue system. In this paper we present a machine learning approach to sluice disambiguation in dialogue. Our experiments, based on solid theoretical considerations, show that applying machine learning techniques using a compact set of features that can be automatically identified from PoS markings in a corpus can be an efficient tool to disambiguate between sluice interpretations.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 28,840
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

21 ( #239,666 of 2,177,988 )

Recent downloads (6 months)

1 ( #317,698 of 2,177,988 )

How can I increase my downloads?

My notes
Sign in to use this feature

There  are no threads in this forum
Nothing in this forum yet.

Other forums