Data streams classification using deep learning under different speeds and drifts

Logic Journal of the IGPL 31 (4):688-700 (2023)
  Copy   BIBTEX

Abstract

Processing data streams arriving at high speed requires the development of models that can provide fast and accurate predictions. Although deep neural networks are the state-of-the-art for many machine learning tasks, their performance in real-time data streaming scenarios is a research area that has not yet been fully addressed. Nevertheless, much effort has been put into the adaption of complex deep learning (DL) models to streaming tasks by reducing the processing time. The design of the asynchronous dual-pipeline DL framework allows making predictions of incoming instances and updating the model simultaneously, using two separate layers. The aim of this work is to assess the performance of different types of DL architectures for data streaming classification using this framework. We evaluate models such as multi-layer perceptrons, recurrent, convolutional and temporal convolutional neural networks over several time series datasets that are simulated as streams at different speeds. In addition, we evaluate how the different architectures react to concept drifts typically found in evolving data streams. The obtained results indicate that convolutional architectures achieve a higher performance in terms of accuracy and efficiency, but are also the most sensitive to concept drifts.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 97,405

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Pistachio Variety Classification using Convolutional Neural Networks.Ahmed S. Sabah & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):113-119.
PREDICTION OF EDUCATIONAL DATA USING DEEP CONVOLUTIONAL NEURAL NETWORK.K. Vijayalakshmi - 2022 - Journal of Science Technology and Research (JSTAR) 3 (1):93-111.
Using Deep Learning to Detect the Quality of Lemons.Mohammed B. Karaja & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):97-104.
Classification of Age and Gender Using ResNet - Deep Learning.Aysha I. Mansour & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (8):20-29.

Analytics

Added to PP
2022-04-09

Downloads
21 (#854,324)

6 months
13 (#351,216)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references