Finitely constrained classes of homogeneous directed graphs

Journal of Symbolic Logic 59 (1):124-139 (1994)
Given a finite relational language L is there an algorithm that, given two finite sets A and B of structures in the language, determines how many homogeneous L structures there are omitting every structure in B and embedding every structure in A? For directed graphs this question reduces to: Is there an algorithm that, given a finite set of tournaments Γ, determines whether QΓ, the class of finite tournaments omitting every tournament in Γ, is well-quasi-order? First, we give a nonconstructive proof of the existence of an algorithm for the case in which Γ consists of one tournament. Then we determine explicitly the set of tournaments each of which does not have an antichain omitting it. Two antichains are exhibited and a summary is given of two structure theorems which allow the application of Kruskal's Tree Theorem. Detailed proofs of these structure theorems will be given elsewhere. The case in which Γ consists of two tournaments is also discussed
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2275255
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,433
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

11 ( #381,493 of 1,925,069 )

Recent downloads (6 months)

1 ( #418,130 of 1,925,069 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.