Probability functions: The matter of their recursive definability

Philosophy of Science 59 (3):372-388 (1992)
Abstract
This paper studies the extent to which probability functions are recursively definable. It proves, in particular, that the (absolute) probability of a statement A is recursively definable from a certain point on, to wit: from the (absolute) probabilities of certain atomic components and conjunctions of atomic components of A on, but to no further extent. And it proves that, generally, the probability of a statement A relative to a statement B is recursively definable from a certain point on, to wit: from the probabilities relative to that very B of certain atomic components and conjunctions of atomic components of A, but again to no further extent. These and other results are extended to the less studied case where A and B are compounded from atomic statements by means of `` ∀ '' as well as `` ∼ '' and "&". The absolute probability functions considered are those of Kolmogorov and Carnap, and the relative ones are those of Kolmogorov, Carnap, Renyi, and Popper
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1086/289676
Options
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 30,169
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index
2009-01-28

Total downloads
14 ( #341,380 of 2,191,918 )

Recent downloads (6 months)
1 ( #288,547 of 2,191,918 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature