Authors
Nam Le
University College Dublin
Abstract
The so-called Baldwin Effect generally says how learning, as a form of ontogenetic adaptation, can influence the process of phylogenetic adaptation, or evolution. This idea has also been taken into computation in which evolution and learning are used as computational metaphors, including evolving neural networks. This paper presents a technique called evolving self-taught neural networks – neural networks that can teach themselves without external supervision or reward. The self-taught neural network is intrinsically motivated. Moreover, the self-taught neural network is the product of the interplay between evolution and learning. We simulate a multi-agent system in which neural networks are used to control autonomous agents. These agents have to forage for resources and compete for their own survival. Experimental results show that the interaction between evolution and the ability to teach oneself in self-taught neural networks outperform evolution and self-teaching alone. More specifically, the emergence of an intelligent foraging strategy is also demonstrated through that interaction. Indications for future work on evolving neural networks are also presented.
Keywords Baldwin Effect, Emergence, Self-learning, Neural Networks
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

 PhilArchive page | Other versions
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Some Neural Networks Compute, Others Don't.Gualtiero Piccinini - 2008 - Neural Networks 21 (2-3):311-321.
Out of Their Minds: Legal Theory in Neural Networks. [REVIEW]Dan Hunter - 1999 - Artificial Intelligence and Law 7 (2-3):129-151.
Diabetes Prediction Using Artificial Neural Network.Nesreen Samer El_Jerjawi & Samy S. Abu-Naser - 2018 - International Journal of Advanced Science and Technology 121:54-64.

Analytics

Added to PP index
2019-06-01

Total views
108 ( #86,998 of 2,348,604 )

Recent downloads (6 months)
31 ( #22,709 of 2,348,604 )

How can I increase my downloads?

Downloads

My notes