Complexity 2017:1-13 (2017)

In the era of the Internet, image encryption plays an important role in information security. Chaotic systems and DNA operations have been proven to be powerful for image encryption. To further enhance the security of image, in this paper, we propose a novel algorithm that combines the fractional-order hyperchaotic Lorenz system and DNA computing for image encryption. Specifically, the algorithm consists of four parts: firstly, we use a fractional-order hyperchaotic Lorenz system to generate a pseudorandom sequence that will be utilized during the whole encryption process; secondly, a simple but effective diffusion scheme is performed to spread the little change in one pixel to all the other pixels; thirdly, the plain image is encoded by DNA rules and corresponding DNA operations are performed; finally, global permutation and 2D and 3D permutation are performed on pixels, bits, and acid bases. The extensive experimental results on eight publicly available testing images demonstrate that the encryption algorithm can achieve state-of-the-art performance in terms of security and robustness when compared with some existing methods, showing that the FOHCLDNA is promising for image encryption.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
DOI 10.1155/2017/9010251
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 59,064
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Algorithms for Computing Minimal Conflicts.S. Luan, L. Magnani & G. Dai - 2006 - Logic Journal of the IGPL 14 (2):391--406.


Added to PP index

Total views
11 ( #807,459 of 2,427,711 )

Recent downloads (6 months)
4 ( #181,048 of 2,427,711 )

How can I increase my downloads?


My notes