Journal of Symbolic Logic 63 (4):1319-1347 (1998)

Abstract
In this paper, we prove that there exist computably enumerable degrees a and b such that $\mathbf{a} > \mathbf{b}$ and for any degree x, if x ≤ a and x is a minimal degree, then $\mathbf{x}
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2586653
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 53,634
Through your library

References found in this work BETA

Degrees Which Do Not Bound Minimal Degrees.Manuel Lerman - 1986 - Annals of Pure and Applied Logic 30 (3):249-276.
Complementing Below Recursively Enumerable Degrees.S. Barry Cooper & Richard L. Epstein - 1987 - Annals of Pure and Applied Logic 34 (1):15-32.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

A Hierarchy for the Plus Cupping Turing Degrees.Yong Wang & Angsheng Li - 2003 - Journal of Symbolic Logic 68 (3):972-988.
Degrees of Monotone Complexity.William C. Calhoun - 2006 - Journal of Symbolic Logic 71 (4):1327 - 1341.
Maximal Contiguous Degrees.Peter Cholak, Rod Downey & Stephen Walk - 2002 - Journal of Symbolic Logic 67 (1):409-437.
Complementation in the Turing Degrees.Theodore A. Slaman & John R. Steel - 1989 - Journal of Symbolic Logic 54 (1):160-176.
On a Problem of Cooper and Epstein.Shamil Ishmukhametov - 2003 - Journal of Symbolic Logic 68 (1):52-64.

Analytics

Added to PP index
2009-01-28

Total views
29 ( #342,767 of 2,348,958 )

Recent downloads (6 months)
1 ( #512,628 of 2,348,958 )

How can I increase my downloads?

Downloads

My notes