Peano arithmetic may not be interpretable in the monadic theory of linear orders
Journal of Symbolic Logic 62 (3):848-872 (1997)
Abstract
Gurevich and Shelah have shown that Peano Arithmetic cannot be interpreted in the monadic second-order theory of short chains (hence, in the monadic second-order theory of the real line). We will show here that it is consistent that the monadic second-order theory of no chain interprets Peano ArithmeticMy notes
Similar books and articles
The strength of nonstandard methods in arithmetic.C. Ward Henson, Matt Kaufmann & H. Jerome Keisler - 1984 - Journal of Symbolic Logic 49 (4):1039-1058.
Quantum Mathematics.J. Michael Dunn - 1980 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1980:512 - 531.
Modest theory of short chains. II.Yuri Gurevich & Saharon Shelah - 1979 - Journal of Symbolic Logic 44 (4):491-502.
On interpretations of bounded arithmetic and bounded set theory.Richard Pettigrew - 2009 - Notre Dame Journal of Formal Logic 50 (2):141-152.
Interpreting second-order logic in the monadic theory of order.Yuri Gurevich & Saharon Shelah - 1983 - Journal of Symbolic Logic 48 (3):816-828.
Model-theoretic properties characterizing peano arithmetic.Richard Kaye - 1991 - Journal of Symbolic Logic 56 (3):949-963.
On the strength of the interpretation method.Yuri Gurevich & Saharon Shelah - 1989 - Journal of Symbolic Logic 54 (2):305-323.
Analytics
Added to PP
2009-01-28
Downloads
42 (#279,985)
6 months
1 (#448,551)
2009-01-28
Downloads
42 (#279,985)
6 months
1 (#448,551)
Historical graph of downloads
References found in this work
Undecidable Theories.Alfred Tarski, Andrzej Mostowski & Raphael M. Robinson - 1953 - Philosophy 30 (114):278-279.
Second-order quantifiers and the complexity of theories.J. T. Baldwin & S. Shelah - 1985 - Notre Dame Journal of Formal Logic 26 (3):229-303.
Monadic theory of order and topology in ZFC.Yuri Gurevich & Saharon Shelah - 1982 - Annals of Mathematical Logic 23 (2-3):179-198.