A construction of non-well-founded sets within Martin-löf's type theory

Journal of Symbolic Logic 54 (1):57-64 (1989)
In this paper, we show that non-well-founded sets can be defined constructively by formalizing Hallnäs' limit definition of these within Martin-Löf's theory of types. A system is a type W together with an assignment of ᾱ ∈ U and α̃ ∈ ᾱ → W to each α ∈ W. We show that for any system W we can define an equivalence relation = w such that α = w β ∈ U and = w is the maximal bisimulation. Aczel's proof that CZF can be interpreted in the type V of iterative sets shows that if the system W satisfies an additional condition (*), then we can interpret CZF minus the set induction scheme in W. W is then extended to a complete system W * by taking limits of approximation chains. We show that in W * the antifoundation axiom AFA holds as well as the axioms of CFZ -
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2275015
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,411
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

18 ( #255,126 of 1,924,745 )

Recent downloads (6 months)

1 ( #417,923 of 1,924,745 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.