Authors
Lin Chang
Bedford Business College
Abstract
We consider a sequence of multi-bubble solutions $ u_k$ of the following fourth order equation $$\qquad \qquad \! \Delta ^2 u_k = \rho _k \frac{ h e^{u_k}}{ \int _\Omega h e^{u_k}} \ \ \mbox {in} \ \Omega, \ \ u_k=\Delta u_k=0 \ \ \mbox {on} \ \partial \Omega,\qquad \qquad \qquad $$ where $h$ is a $C^{2, \beta }$ positive function, $\Omega $ is a bounded and smooth domain in $\mathbb{R}^4$, and $\rho _k$ is a constant such that $ \rho _k\! \le \! C$. We show that, $\lim _{ k\rightarrow +\infty } \rho _k \!=\! 32 \sigma _3 m $ for some positive integer $m\! \ge \! 1$, where $\sigma _3$ is the area of the unit sphere in $\mathbb{R}^4$. Furthermore, we obtain the following sharp estimates for $\rho _k$: $$ \begin{aligned} \rho _k\! -\! 32 \sigma _3 m\! &=\! c_0 \sum _{j=1}^m\! \epsilon _{k, j}^2\! \left\! +\! \Delta R_4 \!+\! \frac{1}{32 \sigma _3} \Delta \log h \!\right)\hspace{-2.0pt}\\ &\quad + o\left \end{aligned} $$ where $c_0\!>\!0$, $\log \frac{64}{\epsilon _{k, j}^4 }\!=\!\!\! \max \limits _{x \in B_\delta }\! u_k \!-\!\log $ and $u_k \!\rightarrow \! 32 \sigma _3 \sum \limits _{j=1}^m G_4 $ in $ C^4_{\rm loc} $. This yields a bound of solutions as $\rho _k$ converges to $ 32 \sigma _3 m$ from below provided that $$ \sum _{j=1}^m \left + \Delta R_4 + \frac{1}{32 \sigma _3} \Delta \log h \right)>0.$$ The analytic work of this paper is the first step toward computing the Leray-Schauder degree of solutions of equation $$
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
DOI 10.2422/2036-2145.2007.4.05
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 64,231
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

On Singular Perturbation Problems with Robin Boundary Condition.Henri Berestycki & Juncheng Wei - 2003 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 2 (1):199-230.
On Almost Orthogonality in Simple Theories.Itay Ben-Yaacov & Frank O. Wagner - 2004 - Journal of Symbolic Logic 69 (2):398 - 408.
Universal Solutions of a Nonlinear Heat Equation on $\mathbb{R}^N$.Thierry Cazenave, Flávio Dickstein & Fred B. Weissler - 2003 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 2 (1):77-117.
Unified Fields of Analytic Space-Time-Energy.André Gleyzal - 1976 - Foundations of Physics 6 (3):299-303.
The Equation -Δu-Λ=|∇ U|P+ C F: The Optimal Power.Boumediene Abdellaoui & Ireneo Peral - 2007 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 6 (1):159-183.
Locating the Boundary Peaks of Least-Energy Solutions to a Singularly Perturbed Dirichlet Problem.Teresa D'Aprile & Juncheng Wei - 2006 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 5 (2):219-259.

Analytics

Added to PP index
2015-04-27

Total views
4 ( #1,251,756 of 2,455,387 )

Recent downloads (6 months)
1 ( #449,037 of 2,455,387 )

How can I increase my downloads?

Downloads

My notes