Analytical modeling of the hysteresis phenomenon in guinea pig ventricular myocytes

Acta Biotheoretica 40 (2-3):177-193 (1992)
In the present study, we have demonstrated hysteresis phenomena in the excitability of single, enzymatically dissociated guinea pig ventricular myocytes. Membrane potentials were recorded with patch pipettes in the whole-cell current clamp configuration. Repetitive stimulation with depolarizing current pulses of constant cycle length and duration but varying strength led to predictable excitation (1:l) and non-excitation (1:0) patterns depending on current strength. In addition, transition between patterns depended on the direction of current intensity change and stable hysteresis loops were obtained in stimulus:response pattern vs. current intensity plots in 14 cells. Increase of pulse duration and decrease of stimulation rate contributed to a reduction in hysteresis loop areas. Changes in amplitude and shape of the subthreshold responses during the transitions from one stable pattern to the other, suggested that activity led to an increase in membrane resistance, particularly in the voltage domain between resting potential, and threshold. Therefore, we modelled the dynamic behaviour of the single cells as a function of diastolic membrane resistance, using previously published analytical solutions. Numerical iteration of the analytical model equations closely reproduced the experimental hysteresis loops in both qualitative and quantitative ways. In particular, the effect of stimulation frequency on the model was similar to the experimental findings. The overall study suggests that the excitability pattern of guinea pig ventricular myocytes accounts for hysteresis and bistabilities when current intensity is allowed to fluctuate around threshold levels.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
DOI 10.1007/BF00168147
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 28,106
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

7 ( #525,792 of 2,171,797 )

Recent downloads (6 months)

1 ( #326,702 of 2,171,797 )

How can I increase my downloads?

My notes
Sign in to use this feature

There  are no threads in this forum
Nothing in this forum yet.

Other forums