The Implications of Gödel Theorem

Etica E Politica 5 (1):1 (2003)
After a brief and informal explanation of the Gödel’s theorem as a version of the Epimenides’ paradox applied to Elementary Number Theory formulated in first-order logic, Lucas shows some of the most relevant consequences of this theorem, such as the impossibility to define truth in terms of provability and so the failure of Verificationist and Intuitionist arguments. He shows moreover how Gödel’s theorem proves that first-order arithmetic admits non-standard models, that Hilbert’s programme is untenable and that second-order logic is not mechanical. There are furthermore some more general consequences: the difference between being reasonable and following a rule and the possibility that one man’s insight differs from another’s without being wrong. Finally some consequences concerning moral and political philosophy can arise from Gödel’s theorem, because it suggests that – instead of some fundamental principle from which all else follows deductively – we can seek for different arguments in different situations
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 28,777
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

153 ( #31,057 of 2,177,974 )

Recent downloads (6 months)

3 ( #112,892 of 2,177,974 )

How can I increase my downloads?

My notes
Sign in to use this feature

There  are no threads in this forum
Nothing in this forum yet.

Other forums