Etica E Politica 5 (1):1 (2003)

After a brief and informal explanation of the Gödel’s theorem as a version of the Epimenides’ paradox applied to Elementary Number Theory formulated in first-order logic, Lucas shows some of the most relevant consequences of this theorem, such as the impossibility to define truth in terms of provability and so the failure of Verificationist and Intuitionist arguments. He shows moreover how Gödel’s theorem proves that first-order arithmetic admits non-standard models, that Hilbert’s programme is untenable and that second-order logic is not mechanical. There are furthermore some more general consequences: the difference between being reasonable and following a rule and the possibility that one man’s insight differs from another’s without being wrong. Finally some consequences concerning moral and political philosophy can arise from Gödel’s theorem, because it suggests that – instead of some fundamental principle from which all else follows deductively – we can seek for different arguments in different situations
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 50,268
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Emergent Design.Kent Palmer - 2009 - Dissertation, University of South Australia

Add more citations

Similar books and articles


Added to PP index

Total views
173 ( #49,310 of 2,325,397 )

Recent downloads (6 months)
6 ( #134,802 of 2,325,397 )

How can I increase my downloads?


My notes