Dynamical emergence of instantaneous 3-spaces in a class of models of general relativity

The Hamiltonian structure of General Relativity (GR), for both metric and tetrad gravity in a definite continuous family of space-times, is fully exploited in order to show that: i) the "Hole Argument" can be bypassed by means of a specific "physical individuation" of point-events of the space-time manifold M^4 in terms of the "autonomous degrees of freedom" of the vacuum gravitational field (Dirac observables), while the "Leibniz equivalence" is reduced to differences in the "non-inertial appearances" (connected to gauge variables) of the same phenomena. ii) the chrono-geometric structure of a solution of Einstein equations for given, gauge-fixed, initial data (a "3-geometry" satisfying the relevant constraints on the Cauchy surface), can be interpreted as an "unfolding" in mathematical global time of a sequence of "achronal 3-spaces" characterized by "dynamically determined conventions" about distant simultaneity. This result stands out as an important conceptual difference with respect to the standard chrono-geometrical view of Special Relativity (SR) and allows, in a specific sense, for an "endurantist" interpretations of ordinary physical objects in GR.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,463
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

29 ( #165,992 of 1,925,534 )

Recent downloads (6 months)

2 ( #308,489 of 1,925,534 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.