The tree property at successors of singular cardinals

Archive for Mathematical Logic 35 (5-6):385-404 (1996)

Abstract
Assuming some large cardinals, a model of ZFC is obtained in which $\aleph_{\omega+1}$ carries no Aronszajn trees. It is also shown that if $\lambda$ is a singular limit of strongly compact cardinals, then $\lambda^+$ carries no Aronszajn trees
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1007/s001530050052
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 40,131
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Squares, Scales and Stationary Reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
The Tree Property Up to אω+1.Itay Neeman - 2014 - Journal of Symbolic Logic 79 (2):429-459.
Aronszajn Trees and the Successors of a Singular Cardinal.Spencer Unger - 2013 - Archive for Mathematical Logic 52 (5-6):483-496.
Fragility and Indestructibility of the Tree Property.Spencer Unger - 2012 - Archive for Mathematical Logic 51 (5-6):635-645.

View all 23 citations / Add more citations

Similar books and articles

Aronszajn Trees and the Successors of a Singular Cardinal.Spencer Unger - 2013 - Archive for Mathematical Logic 52 (5-6):483-496.
Successors of Singular Cardinals and Coloring Theorems I.Todd Eisworth & Saharon Shelah - 2005 - Archive for Mathematical Logic 44 (5):597-618.
Some Problems in Singular Cardinals Combinatorics.Matthew Foreman - 2005 - Notre Dame Journal of Formal Logic 46 (3):309-322.
The Tree Property at [Image].Dima Sinapova - 2012 - Journal of Symbolic Logic 77 (1):279 - 290.
On Successors of Jónsson Cardinals.J. Vickers & P. D. Welch - 2000 - Archive for Mathematical Logic 39 (6):465-473.
The Tree Property at ℵ Ω+1.Dima Sinapova - 2012 - Journal of Symbolic Logic 77 (1):279-290.
Successors of Singular Cardinals and Coloring Theorems II.Todd Eisworth & Saharon Shelah - 2009 - Journal of Symbolic Logic 74 (4):1287 - 1309.
A Remark on the Tree Property in a Choiceless Context.Arthur W. Apter - 2011 - Archive for Mathematical Logic 50 (5-6):585-590.
Making All Cardinals Almost Ramsey.Arthur W. Apter & Peter Koepke - 2008 - Archive for Mathematical Logic 47 (7-8):769-783.
The Tree Property and the Failure of SCH at Uncountable Cofinality.Dima Sinapova - 2012 - Archive for Mathematical Logic 51 (5-6):553-562.
Strong Tree Properties for Small Cardinals.Laura Fontanella - 2013 - Journal of Symbolic Logic 78 (1):317-333.
Souslin Trees and Successors of Singular Cardinals.Shai Ben-David & Saharon Shelah - 1986 - Annals of Pure and Applied Logic 30 (3):207-217.
On the Free Subset Property at Singular Cardinals.Peter Koepke - 1989 - Archive for Mathematical Logic 28 (1):43-55.

Analytics

Added to PP index
2013-11-23

Total views
23 ( #351,247 of 2,237,214 )

Recent downloads (6 months)
4 ( #479,053 of 2,237,214 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature