Probabilities for two properties

Erkenntnis 52 (1):63-91 (2000)
Let R(X, B) denote the class of probability functions that are defined on algebra X and that represent rationally permissible degrees of certainty for a person whose total relevant background evidence is B. This paper is concerned with characterizing R(X, B) for the case in whichX is an algebra of propositions involving two properties and B is empty. It proposes necessary conditions for a probability function to be in R(X, B), some of which involve the notion of statistical dependence. The class of probability functions that satisfy these conditions, here denoted PI, includes a class that Carnap once proposed for the same situation. Probability functions in PI violate Carnap's axiom of analogy but, it is argued, that axiom should be rejected. A derivation of Carnap's model by Hesse has limitations that are not present in the derivation of PI given here. Various alternative probability models are considered and rejected.
Keywords Philosophy   Philosophy   Epistemology   Ethics   Logic   Ontology
Categories (categorize this paper)
DOI 10.1023/A:1005557828204
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,411
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

View all 6 citations / Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

8 ( #467,641 of 1,924,732 )

Recent downloads (6 months)

1 ( #417,923 of 1,924,732 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.