Applying epigenetics to Alzheimer's disease via the latent early-life associated regulation model

Curr Alzheimer Res 9:589-99 (2012)
  Copy   BIBTEX

Abstract

Alzheimer's disease is a leading cause of aging related dementia and has been extensively studied by several groups around the world. A general consensus, based on neuropathology, genetics and cellular and animal models, is that the 4 kDa amyloid beta protein triggers a toxic cascade that induces microtubule-associated protein tau hyperphosphorylation and deposition. Together, these lesions lead to neuronal dysfunction and neurodegeneration, modeled in animals, that ultimately causes dementia. Genetic studies show that a simple duplication of the Abeta precursor gene, as occurs in Down syndrome , with a 1.5-fold increase in expression, can cause dementia with the complete AD associated neuropathology. The most fully characterized form of AD is early onset familial AD . Unfortunately, by far the most common form of AD is late onset AD . FAD has well-identified autosomally dominant genetic causes, absent in LOAD. It is reasonable to hypothesize that environmental influences play a much stronger role in etiology of LOAD than of FAD. Since AD pathology in LOAD closely resembles FAD with accumulation of both Abeta and MAPT, it is likely that the environmental factors foster accumulation of these proteins in a manner similar to FAD mutations. Therefore, it is important to identify environmentally driven changes that "phenocopy" FAD in order to find ways to prevent LOAD. Epigenetic changes in expression are complex but stable determinants of many complex traits. Some aspects are regulated by prenatal and early post-natal development, others punctuate specific periods of maturation, and still others occur throughout life, mediating predictable changes that take place during various developmental stages. Environmental agents such as mercury, lead, and pesticides can disrupt the natural epigenetic program and lead to developmental deficits, mental retardation, feminization, and other complex syndromes. In this review we discuss latent early- life associated regulation , where apparently temporary changes, induced by environmental agents, become latent and present themselves again at maturity or senescence to increase production of Abeta that may cause AD. The model provides us with a novel direction for identifying potentially harmful agents that may induce neurodegeneration and dementia later in life and provides hope that we may be able to prevent age-related neurodegenerative disease by "detoxifying" our environment

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 94,517

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2015-06-29

Downloads
13 (#1,062,995)

6 months
13 (#282,360)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Bryan Maloney
Indiana University Purdue University, Indianapolis

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references