The theory of all substructures of a structure: Characterisation and decision problems

Journal of Symbolic Logic 44 (4):583-598 (1979)
An infinitary characterisation of the first-order sentences true in all substructures of a structure M is used to obtain partial reduction of the decision problem for such sentences to that for Th(M). For the relational structure $\langle\mathbf{R}, \leq, +\rangle$ this gives a decision procedure for the ∃ x∀ y-part of the theory of all substructures, yet we show that the ∃ x 1x 2 ∀ y-part, and the entire theory, is Π 1 1 -complete. The theory of all ordered subsemigroups of $\langle\mathbf{R}, \leq, +\rangle$ is also shown Π 1 1 -complete. Applications in the philosophy of science are mentioned
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2273297
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,453
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

22 ( #214,015 of 1,925,265 )

Recent downloads (6 months)

7 ( #124,740 of 1,925,265 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.