Fitch’s Paradox, Stumbling Block or Touchstone for Knowability

Dissertation, Paris 1 (2012)
If we want to say that all truths are knowable Fitch’s Paradox leads us to conclude that all truths are known. Is it a real philosophical problem or a mere modeling problem? Is it possible to express the idea of knowability using modal logic? The Knowability Principle is expressed by the formula: if Phi is true then it is possible to know that Phi. But what is the meaning of possibility in this context? Using standard modal operators under what condition can we express the idea of knowability? We will in particular examine the subjacent relations of the modal operators in a Kripke Model. We will define the possibility as the possibility of learning opposed to an unclear possibility. Then we will show that Fitch’s Paradox becomes clearer and we will examine how the Knowability Principle could be expressed in such frame.
Keywords Fitch's Paradox  Knowability
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index

Total downloads
317 ( #11,852 of 2,236,878 )

Recent downloads (6 months)
13 ( #35,569 of 2,236,878 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature