Slim models of zermelo set theory

Journal of Symbolic Logic 66 (2):487-496 (2001)
  Copy   BIBTEX

Abstract

Working in Z + KP, we give a new proof that the class of hereditarily finite sets cannot be proved to be a set in Zermelo set theory, extend the method to establish other failures of replacement, and exhibit a formula Φ(λ, a) such that for any sequence $\langle A_{\lambda} \mid \lambda \text{a limit ordinal} \rangle$ where for each $\lambda, A_{\lambda} \subseteq ^{\lambda}2$ , there is a supertransitive inner model of Zermelo containing all ordinals in which for every λ A λ = {α ∣Φ(λ, a)}

Other Versions

original Mathias, A. R. D. (2001) "Slim Models of Zermelo Set Theory". Journal of Symbolic Logic 66(2):487-496

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 96,349

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2009-01-28

Downloads
75 (#232,058)

6 months
20 (#201,986)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

The Iterative Conception of Set: a (Bi-)Modal Axiomatisation.J. P. Studd - 2013 - Journal of Philosophical Logic 42 (5):1-29.
The strength of Mac Lane set theory.A. R. D. Mathias - 2001 - Annals of Pure and Applied Logic 110 (1-3):107-234.
Zermelo and set theory.Akihiro Kanamori - 2004 - Bulletin of Symbolic Logic 10 (4):487-553.
Mathematical existence.Penelope Maddy - 2005 - Bulletin of Symbolic Logic 11 (3):351-376.

View all 16 citations / Add more citations

References found in this work

Happy families.A. R. D. Mathias - 1977 - Annals of Mathematical Logic 12 (1):59.
Elements of Set Theory.Herbert B. Enderton - 1981 - Journal of Symbolic Logic 46 (1):164-165.
Mengeninduktion und Fundierungsaxiom.Ronald Björn Jensen & Max E. Schröder - 1969 - Archive for Mathematical Logic 12 (3-4):119-133.

Add more references