The consistency of arithmetic

The paper presents a proof of the consistency of Peano Arithmetic (PA) that does not lie in deducing its consistency as a theorem in an axiomatic system. PA’s consistency cannot be proved in PA, and to deduce its consistency in some stronger system PA+ is self-defeating, since the stronger system may itself be inconsistent. Instead, a semantic proof is constructed which demonstrates consistency not relative to the consistency of some other system but in an absolute sense
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 30,694
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index

Total downloads
127 ( #39,568 of 2,197,228 )

Recent downloads (6 months)
1 ( #298,376 of 2,197,228 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature