Abstract
Standard decision theory has trouble handling cases involving acts without finite expected values. This paper has two aims. First, building on earlier work by Colyvan (2008), Easwaran (2014), and Lauwers and Vallentyne (2016), it develops a proposal for dealing with such cases, Difference Minimizing Theory. Difference Minimizing Theory provides satisfactory verdicts in a broader range of cases than its predecessors. And it vindicates two highly plausible principles of standard decision theory, Stochastic Equivalence and Stochastic Dominance. The second aim is to assess some recent arguments against Stochastic Equivalence and Stochastic Dominance. If successful, these arguments refute Difference Minimizing Theory. This paper contends that these arguments are not successful.