Collins Donald J.. Recursively enumerable degrees and the conjugacy problem. Acta mathematica, vol. 122 no. 1–2 , pp. 115–160 [Book Review]

Journal of Symbolic Logic 35 (3):477 (1970)

Abstract This article has no associated abstract. (fix it)
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2270748
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 47,122
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Recursively Enumerable Degrees and the Conjugacy Problem.Donald J. Collins - 1971 - Journal of Symbolic Logic 36 (3):540-540.
Recursively Enumerable Degrees and the Conjugacy Problem.Donald J. Collins - 1970 - Journal of Symbolic Logic 35 (3):477-477.
The Density of Infima in the Recursively Enumerable Degrees.Theodore A. Slaman - 1991 - Annals of Pure and Applied Logic 52 (1-2):155-179.
Complementation in the Turing Degrees.Theodore A. Slaman & John R. Steel - 1989 - Journal of Symbolic Logic 54 (1):160-176.
Incomparable Prime Ideals of Recursively Enumerable Degrees.William C. Calhoun - 1993 - Annals of Pure and Applied Logic 63 (1):39-56.
On Recursive Enumerability with Finite Repetitions.Stephan Wehner - 1999 - Journal of Symbolic Logic 64 (3):927-945.
On Recursive Enumerability with Finite Repetitions.Stephan Wehner - 1999 - Journal of Symbolic Logic 64 (3):927-945.
The Isolated D. R. E. Degrees Are Dense in the R. E. Degrees.Geoffrey Laforte - 1996 - Mathematical Logic Quarterly 42 (1):83-103.

Analytics

Added to PP index
2016-06-30

Total views
13 ( #661,459 of 2,289,284 )

Recent downloads (6 months)
2 ( #589,325 of 2,289,284 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature