Journal of Symbolic Logic 69 (3):907-913 (2004)
Abstract |
We study reals with infinitely many incompressible prefixes. Call $A \in 2^{\omega}$ Kolmogorot random if $(\exists^{\infty}n) C(A \upharpoonright n) \textgreater n - \mathcal{O}(1)$ , where C denotes plain Kolmogorov complexity. This property was suggested by Loveland and studied by $Martin-L\ddot{0}f$ , Schnorr and Solovay. We prove that 2-random reals are Kolmogorov random. Together with the converse-proved by Nies. Stephan and Terwijn [11]-this provides a natural characterization of 2-randomness in terms of plain complexity. We finish with a related characterization of 2-randomness
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
DOI | 10.2178/jsl/1096901774 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
No references found.
Citations of this work BETA
Calibrating Randomness.Rod Downey, Denis R. Hirschfeldt, André Nies & Sebastiaan A. Terwijn - 2006 - Bulletin of Symbolic Logic 12 (3):411-491.
Randomness and Computability: Open Questions.Joseph S. Miller & André Nies - 2006 - Bulletin of Symbolic Logic 12 (3):390-410.
The K -Degrees, Low for K Degrees,and Weakly Low for K Sets.Joseph S. Miller - 2009 - Notre Dame Journal of Formal Logic 50 (4):381-391.
Prefix and Plain Kolmogorov Complexity Characterizations of 2-Randomness: Simple Proofs.Bruno Bauwens - 2015 - Archive for Mathematical Logic 54 (5-6):615-629.
Algorithmic Randomness and Measures of Complexity.George Barmpalias - 2013 - Bulletin of Symbolic Logic 19 (3):318-350.
View all 6 citations / Add more citations
Similar books and articles
Subclasses of the Weakly Random Reals.Johanna N. Y. Franklin - 2010 - Notre Dame Journal of Formal Logic 51 (4):417-426.
Relative Randomness and Cardinality.George Barmpalias - 2010 - Notre Dame Journal of Formal Logic 51 (2):195-205.
Computational Randomness and Lowness.Sebastiaan A. Terwijn & Domenico Zambella - 2001 - Journal of Symbolic Logic 66 (3):1199-1205.
An Extension of van Lambalgen's Theorem to Infinitely Many Relative 1-Random Reals.Kenshi Miyabe - 2010 - Notre Dame Journal of Formal Logic 51 (3):337-349.
Relative Randomness and Real Closed Fields.Alexander Raichev - 2005 - Journal of Symbolic Logic 70 (1):319 - 330.
Schnorr Randomness.Rodney G. Downey & Evan J. Griffiths - 2004 - Journal of Symbolic Logic 69 (2):533 - 554.
Analytics
Added to PP index
2009-02-05
Total views
251 ( #43,702 of 2,504,813 )
Recent downloads (6 months)
1 ( #417,030 of 2,504,813 )
2009-02-05
Total views
251 ( #43,702 of 2,504,813 )
Recent downloads (6 months)
1 ( #417,030 of 2,504,813 )
How can I increase my downloads?
Downloads