Interpretation: SEG 5 (2):SF189-SF210 (2017)

Abstract
The role of the primary detrital grain assemblage as a control on diagenetic pathways is reasonably well-understood in sandstones and limestones, but less so in mudrocks. We have documented diagenesis in mudstones from the Triassic Yanchang Formation that are dominated by grains derived from outside the basin of deposition. Major extrabasinal grains are K-rich clay, quartz, plagioclase, K-feldspar, lithic fragments, and micas. In terms of the quartz-feldspar-lithic grain compositions, the silt fraction in these samples is classified as arkose. Grains of intrabasinal derivation include particulate organic matter, phosphatic debris, and rare carbonate allochems. The principal chemical diagenetic components in these mudrocks have strongly localized spatial distributions at micrometer to centimeter scales. Chemical diagenetic components include cone-in-cone structures, replacements of detrital feldspar, pore-filling precipitates within anomalously large pores, pore-filling solid hydrocarbon, and very minor quartz overgrowths associated with local packing flaws around silt-size detrital quartz grains. Matrix-dispersed intergranular cementation, as observed in well-known organic-rich marine mudstones, such as the Barnett Shale and the Eagle Ford Formation, is not observed in Yanchang Formation lacustrine mudstones. The authigenic features present are consistent with the thermal maturity of the units and are broadly similar to features observed in other mudstones that contain grain assemblages dominated by particles of extrabasinal derivation. The low porosity and the absence of significant amounts of intergranular cement indicate that compactional porosity loss and in-filling by migrated solid hydrocarbon were the major causes of porosity decline during diagenesis of Yanchang Formation mudrocks. Although the mudstones of the Yanchang Formation have a relatively high content of organic carbon and serve as source rocks in the Ordos Basin, the depositional grain assemblage is not conducive to creation of porosity, permeability, and mechanical properties that would make these mudrocks effective unconventional reservoirs.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
DOI 10.1190/int-2016-0092.1
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 56,903
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

View all 7 references / Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Analytics

Added to PP index
2017-05-27

Total views
30 ( #344,760 of 2,409,596 )

Recent downloads (6 months)
2 ( #347,486 of 2,409,596 )

How can I increase my downloads?

Downloads

My notes