Finite mathematics and the justification of the axiom of choicet

Philosophia Mathematica 8 (1):9-25 (2000)
I discuss a difficulty concerning the justification of the Axiom of Choice in terms of such informal notions such as that of iterative set. A recent attempt to solve the difficulty is by S. Lavine, who claims in his Understanding the Infinite that the axioms of set theory receive intuitive justification from their being self-evidently true in Fin(ZFC), a finite counterpart of set theory. I argue that Lavine's explanatory attempt fails when it comes to AC: in this respect Fin(ZFC) is no better off than the iterative notion
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1093/philmat/8.1.9
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,479
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

20 ( #232,972 of 1,925,594 )

Recent downloads (6 months)

3 ( #254,997 of 1,925,594 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.