Optimizing Local Probability Models for Statistical Parsing

Authors
M. T. Mitchell
Deakin University
Abstract
This paper studies the properties and performance of models for estimating local probability distributions which are used as components of larger probabilistic systems — history-based generative parsing models. We report experimental results showing that memory-based learning outperforms many commonly used methods for this task (Witten-Bell, Jelinek-Mercer with fixed weights, decision trees, and log-linear models). However, we can connect these results with the commonly used general class of deleted interpolation models by showing that certain types of memory-based learning, including the kind that performed so well in our experiments, are instances of this class. In addition, we illustrate the divergences between joint and conditional data likelihood and accuracy performance achieved by such models, suggesting that smoothing based on optimizing accuracy directError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMapError: Illegal entry in bfrange block in ToUnicode CMaply might greatly improve performance.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Translate to english
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 34,932
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Analytics

Added to PP index
2010-12-22

Total downloads
7 ( #615,363 of 2,272,768 )

Recent downloads (6 months)
1 ( #375,680 of 2,272,768 )

How can I increase my downloads?

Monthly downloads

My notes

Sign in to use this feature