Systems with the converse Ackermann property

Theoria 1 (1):253-258 (1985)
A system S has the “converse Ackermann property” (C.A.P.) if (A -> B) -> C is unprovable in S whenever C is a propositional variable. In this paper we define the fragments with the C.A.P. of some well-know propositional systems in the spectrum between the minimal and classical logic. In the first part we succesively study the implicative and positive fragments and the full calculi. In the second, we prove by a matrix method that each one of the systems has the C.A.P. Thus, we think the problem proposed in Anderson & Belnap (1975) § 8.12 has been solved
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI theoria19851153
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 30,780
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index

Total downloads
23 ( #242,366 of 2,214,632 )

Recent downloads (6 months)
1 ( #408,824 of 2,214,632 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature