José M. Méndez
Universidad de Salamanca
A system S has the “converse Ackermann property” if -> C is unprovable in S whenever C is a propositional variable. In this paper we define the fragments with the C.A.P. of some well-know propositional systems in the spectrum between the minimal and classical logic. In the first part we succesively study the implicative and positive fragments and the full calculi. In the second, we prove by a matrix method that each one of the systems has the C.A.P. Thus, we think the problem proposed in Anderson & Belnap § 8.12 has been solved.
Keywords Analytic Philosophy  Philosophy of Science
Categories (categorize this paper)
ISBN(s) 0495-4548
DOI theoria19851153
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 63,319
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Systems with the Converse Ackermann Property.José Manuel Méndez Rodríguez - 1985 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 1 (1):253-258.
Converse Ackermann Property and Minimal Negation.G. Robles & J. MÉndez - 2005 - Teorema: International Journal of Philosophy 24 (1).
A Routley-Meyer Semantics for Converse Ackermann Property.José M. Méndez - 1987 - Journal of Philosophical Logic 16 (1):65 - 76.
A Routley-Meyer Semantics For Converse Ackermann Property.Jose A. Mendez - 1987 - Journal of Philosophical Logic 16 (February):65-76.
Two Extensions of Lewis’ S3 with Peirce’s Law.Francisco Salto & José M. Méndez - 1999 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 14 (3):407-411.
Lindenbaum's Extensions.Andrzej Biela & Teodor Stepien - 1981 - Bulletin of the Section of Logic 10 (1):42-46.
Sentential Constants in Systems Near R.John Slaney - 1993 - Studia Logica 52 (3):443 - 455.
Terminating Tableau Systems for Hybrid Logic with Difference and Converse.Mark Kaminski & Gert Smolka - 2009 - Journal of Logic, Language and Information 18 (4):437-464.
Constructive R.José M. Méndez - 1987 - Bulletin of the Section of Logic 16 (4):167-173.


Added to PP index

Total views
43 ( #248,656 of 2,448,683 )

Recent downloads (6 months)
1 ( #447,034 of 2,448,683 )

How can I increase my downloads?


My notes