Philosophia Scientiae 16 (1):105-127 (2012)

Abstract
Dans son « Découverte d'un nouveau principe de mécanique » Euler a donné, pour la première fois, une preuve du théorème qu'on appelle aujourd'hui le Théorème d'Euler. Dans cet article je vais me concentrer sur la preuve originale d'Euler, et je vais montrer comment la pratique mathématique d Euler peut éclairer le débat philosophique sur la notion de preuves explicatives en mathématiques. En particulier, je montrerai comment l'un des modèles d'explication mathématique les plus connus, celui proposé par Mark Steiner dans son article « Mathematical explanation », n'est pas en mesure de rendre compte du caractère explicatif de la preuve donnée par Euler. Cela contredit l'intuition originale du mathématicien Euler, qui attribuait à sa preuve un caractère explicatif spécifique.In his "Découverte d'un nouveau principe de mécanique" Euler offered, for the first time, a proof of the so-called Euler's Theorem. In this paper I will focus on Euler's original proof and I will show how a look at Euler's practice as a mathematician can inform the philosophical debate about the notion of explanatory proofs in mathematics. In particular, I will show how one of the major accounts of mathematical explanation, the one proposed by Mark Steiner in his paper " Mathematical explanation ", is not able to account for the explanatory character of Euler's proof. This contradicts the original intuitions of the mathematician Euler, who attributed to his proof a particular explanatory character
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.4000/philosophiascientiae.721
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 58,486
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Deductive Nomological Model and Mathematics: Making Dissatisfaction More Satisfactory.Daniele Molinini - 2014 - Theoria : An International Journal for Theory, History and Fundations of Science 29 (2):223-241.
Euler’s Königsberg: The Explanatory Power of Mathematics.Tim Räz - 2018 - European Journal for Philosophy of Science 8 (3):331-346.
Euler’s Königsberg: The Explanatory Power of Mathematics.Tim Räz - 2017 - European Journal for Philosophy of Science:1-16.

Add more citations

Similar books and articles

What Are Mathematical Coincidences ?M. Lange - 2010 - Mind 119 (474):307-340.
.[author unknown] - unknown
Against Mathematical Explanation.Mark Zelcer - 2013 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 44 (1):173-192.
Indexing and Mathematical Explanation.Alan Baker & Mark Colyvan - 2011 - Philosophia Mathematica 19 (3):323-334.

Analytics

Added to PP index
2014-01-18

Total views
28 ( #375,831 of 2,421,433 )

Recent downloads (6 months)
2 ( #351,589 of 2,421,433 )

How can I increase my downloads?

Downloads

My notes