Abstract
The notion of monadic three-valued ukasiewicz algebras was introduced by L. Monteiro ([12], [14]) as a generalization of monadic Boolean algebras. A. Monteiro ([9], [10]) and later L. Monteiro and L. Gonzalez Coppola [17] obtained a method for the construction of a three-valued ukasiewicz algebra from a monadic Boolea algebra. In this note we give the construction of a monadic three-valued ukasiewicz algebra from a Boolean algebra B where we have defined two quantification operations and * such that *x=*x (where *x=-*-x). In this case we shall say that and * commutes. If B is finite and is an existential quantifier over B, we shall show how to obtain all the existential quantifiers * which commute with .Taking into account R. Mayet [3] we also construct a monadic three-valued ukasiewicz algebra from a monadic Boolean algebra B and a monadic ideal I of B.