Archive for Mathematical Logic 42 (8):791-796 (2003)

Authors
Abstract
We construct ω-framed Kripke models of i∀1 and iΠ1 non of whose worlds satisfies ∀x∃y(x=2y∨x=2y+1) and ∀x,y∃zExp(x, y, z) respectively. This will enable us to show that i∀1 does not prove ¬¬∀x∃y(x=2y∨x=2y+1) and iΠ1 does not prove ¬¬∀x, y∃zExp(x, y, z). Therefore, i∀1⊬¬¬lop and iΠ1⊬¬¬iΣ1. We also prove that HA⊬lΣ1 and present some remarks about iΠ2
Keywords Fragments of Heyting Arithmetic  Kripke Models  exp
Categories (categorize this paper)
DOI 10.1007/s00153-003-0189-8
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 53,688
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Weak Arithmetics and Kripke Models.Morteza Moniri - 2002 - Mathematical Logic Quarterly 48 (1):157-160.
Corrigendum to "Weak Arithmetics and Kripke Models".Morteza Moniri - 2004 - Mathematical Logic Quarterly 50 (6):637.
Classical and Intuitionistic Models of Arithmetic.Kai F. Wehmeier - 1996 - Notre Dame Journal of Formal Logic 37 (3):452-461.
Models of Intuitionistic TT and N.Daniel Dzierzgowski - 1995 - Journal of Symbolic Logic 60 (2):640-653.
On the Structure of Kripke Models of Heyting Arithmetic.Zoran Marković - 1993 - Mathematical Logic Quarterly 39 (1):531-538.
Submodels of Kripke Models.Albert Visser - 2001 - Archive for Mathematical Logic 40 (4):277-295.
Undecidability and Intuitionistic Incompleteness.D. C. McCarty - 1996 - Journal of Philosophical Logic 25 (5):559 - 565.
Toward the Limits of the Tennenbaum Phenomenon.Paola D'Aquino - 1997 - Notre Dame Journal of Formal Logic 38 (1):81-92.
Basic Predicate Calculus.Wim Ruitenburg - 1998 - Notre Dame Journal of Formal Logic 39 (1):18-46.

Analytics

Added to PP index
2013-11-23

Total views
39 ( #249,254 of 2,349,561 )

Recent downloads (6 months)
1 ( #510,673 of 2,349,561 )

How can I increase my downloads?

Downloads

My notes