On the meaning of Hilbert's consistency problem (paris, 1900)

Synthese 137 (1-2):129 - 139 (2003)
Abstract
The theory that ``consistency implies existence'' was put forward by Hilbert on various occasions around the start of the last century, and it was strongly and explicitly emphasized in his correspondence with Frege. Since (Gödel's) completeness theorem, abstractly speaking, forms the basis of this theory, it has become common practice to assume that Hilbert took for granted the semantic completeness of second order logic. In this paper I maintain that this widely held view is untrue to the facts, and that the clue to explain what Hilbert meant by linking together consistency and existence is to be found in the role played by the completeness axiom within both geometrical and arithmetical axiom systems.
Keywords Philosophy   Philosophy   Epistemology   Logic   Metaphysics   Philosophy of Language
Categories (categorize this paper)
Reprint years 2004
DOI 10.1023/A:1026282901818
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 28,824
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index

2009-01-28

Total downloads

59 ( #90,081 of 2,178,142 )

Recent downloads (6 months)

2 ( #166,129 of 2,178,142 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Order:
There  are no threads in this forum
Nothing in this forum yet.

Other forums