Logica Universalis 10 (2-3):339-357 (2016)

Abstract
In this paper, we provide an overview of some of the results obtained in the mathematical theory of intermediate quantifiers that is part of fuzzy natural logic. We briefly introduce the mathematical formal system used, the general definition of intermediate quantifiers and define three specific ones, namely, “Almost all”, “Most” and “Many”. Using tools developed in FNL, we present a list of valid intermediate syllogisms and analyze a generalized 5-square of opposition.
Keywords Aristotle square of opposition  fuzzy natural logic  intermediate generalized quantifiers  generalized Peterson’s square of opposition
Categories (categorize this paper)
DOI 10.1007/s11787-016-0146-z
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 63,110
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

The Power of the Hexagon.Jean-Yves Béziau - 2012 - Logica Universalis 6 (1-2):1-43.
Linguistics and Natural Logic.George Lakoff - 1970 - Synthese 22 (1-2):151 - 271.
Sur l'opposition des concepts.Robert Blanche - 1953 - Theoria 19 (3):89-130.
“Setting” N-Opposition.Régis Pellissier - 2008 - Logica Universalis 2 (2):235-263.

View all 13 references / Add more references

Citations of this work BETA

The Vatican Square.Jean-Yves Beziau & Raffaela Giovagnoli - 2016 - Logica Universalis 10 (2-3):135-141.

Add more citations

Similar books and articles

Not Only Barbara.Paul J. E. Dekker - 2015 - Journal of Logic, Language and Information 24 (2):95-129.
The Square of Opposition and Generalized Quantifiers.Duilio D'Alfonso - 2012 - In J.-Y. Beziau & Dale Jacquette (eds.), Around and Beyond the Square of Opposition. Birkhäuser. pp. 219--227.
The Square of Opposition — a New Approach.H. Greniewski - 1953 - Studia Logica 1 (1):297-301.
Generalized Quantifiers and the Square of Opposition.Mark Brown - 1984 - Notre Dame Journal of Formal Logic 25 (4):303-322.
Reconciling Aristotle and Frege.Alex Orenstein - 1999 - Notre Dame Journal of Formal Logic 40 (3):391-413.
Leibniz’s Logic and the “Cube of Opposition”.Wolfgang Lenzen - 2016 - Logica Universalis 10 (2-3):171-189.

Analytics

Added to PP index
2016-04-13

Total views
15 ( #673,496 of 2,448,086 )

Recent downloads (6 months)
1 ( #451,143 of 2,448,086 )

How can I increase my downloads?

Downloads

My notes