Size matters

Abstract
Does Cantorian set theory alter our intuitive conception of number? Yes. In particular, Cantorian set theory revises our intuitive conception of when two sets have the same size (cardinal number). Consider a variant of Galileo’s Paradox, which notes that the members of the set of natural numbers, N, can be put in one-to-one correspondence with the members of the set of even numbers, E.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 38,097
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Analytics

Added to PP index
2009-01-28

Total views
44 ( #155,795 of 2,313,468 )

Recent downloads (6 months)
1 ( #549,066 of 2,313,468 )

How can I increase my downloads?

Monthly downloads

My notes

Sign in to use this feature